If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2-5d+2=0
a = 3; b = -5; c = +2;
Δ = b2-4ac
Δ = -52-4·3·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*3}=\frac{4}{6} =2/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*3}=\frac{6}{6} =1 $
| -10x2x-18=6 | | 3x^2+1=50 | | 6×-5=8-4(2x+7) | | 3-5w-2w=0 | | 6-7a-5a=0 | | 2+y(y)=120 | | 4.4x2.05=9.02 | | k=3(8) | | 7(m-12)=-21 | | t+15=92 | | f-33=23 | | (l-3)(l-2)=30 | | n-2=47 | | t=91-27 | | 97-51=w | | l(l-2)(l-3)=30 | | 6c+-22=3c-7= | | q-4=19 | | 6c+-22=3c+-7 | | 4z(z-3)=0 | | 6x^2+12x-11=0 | | (12)(10)=(x+6)(x-1) | | 7x(3+2)=7 | | 15x+30x=x2 | | 3/8k=1/8 | | S=25t+5t^2 | | 4(20x+50)=1,160 | | 9w-12=75 | | Y=10+2(3+4x) | | 14/x=8/20 | | 21=h-3/5 | | 2(z-6)=4z+z |